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ABSTRACT 

 Control of large-scale, aero-elastic models requires advanced model 

reduction techniques for implementation of feedback control.  New reduced order 

model techniques must be developed based on the concepts and physics of fluid-

structure interaction.  Current methods are inefficient and inaccurate when dealing 

with these large scale aero-elastic models.  Reduced order model (ROM) based 

controllers may produce adverse affects on un-modeled modes causing instability in 

the system.  The idea of compensation is introduced to correct for this problem.  

The primary goal of this paper is to explore three separate techniques for 

developing ROM based feedback controllers to aero-elastic systems.  They are the 

following: modal truncation with residual mode filter (RMF) compensation, Schur 

form with residual state filter (RSF) compensation and the singular perturbation 

approach. 
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1 Introduction 

 In recent years, the improvements in computational capabilities and numerical 

algorithms have allowed for the design and formation of highly accurate, physics-based, 

non-linear, large-scale aero-elastic systems(1).  An aero-elastic model is a model which 

describes the interaction between structural elasticity and fluid aerodynamics.  Complex 

finite element analysis (FEA) and computational fluid dynamics (CFD) are used to build 

these models.  The fluid and structure are broken up into meshes and nodes which 

describe the state of the body of the structure and state of the flow field of the fluid.  

Dynamical equations, such as conservation of mass, momentum, and energy exist at 

each of these nodes.  Computational programs are able to calculate unknown variables 

(stresses, deflections, forces, pressures, etc) at each of these nodes for given set of 

boundary conditions.   

 Fluid systems need an extremely large number of nodes to define an accurate 

mesh to model the fluid dynamics. These models may have around a million degrees of 

freedom; systems of this scale can typically have matrices on the size of 10,000 x 

10,000(1).  Designing control systems for this scale is not feasible; reduced order models 

(ROM) are needed to capture the dynamic behavior of the large scale model so that 

feedback control can be implemented.  Current methods are inefficient and inaccurate 

for reducing such large scale models.  New methods, or combinations of methods, are 

needed to accurately reduce the order of the model so that ROM based control is 

feasible. 
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 This paper will address three separate techniques for reduced order modeling of 

large scale aero-elastic systems: modal truncation with residual mode filter (RMF) 

compensation, Schur decomposition with residual state filter (RSF) compensation, and 

singular perturbation approach. 

 The first method, modal or eigen truncation, is a widley used technique for 

creating a ROM.  The system is diagonalized and the lower / most dominant modes are 

retained for the ROM.  The lower frequency modes are normally the most dominante 

modes because they have the highest displacement and highest energy states.  This 

method is very appealing for control of structure-space systems because structures can 

be very well modeled by only a few modes (2).  These modes will be the lowest 

frequency, most dominant modes of the system.  It is also fairly simple to numerically 

calculate eigenvectors and eigenvalues of a system with today’s computational 

techniques and algorithms.  The downfall of this method is that when applied to an 

aero-elastic model, fluid eigenvalues tend to be very closely packed which requires for a 

large number of retained eigenvalues.  This will limit the size of the reduced order 

model, and makes it hard to determine which fluid eigenvalues are most dominant. 

 The second method, Schur decomposition (6), is very similar to that of modal 

truncation.  The only difference between the two methods is that the system does not 

need to be diagonalized in the Schur decomposition.  The linear time invariant (LTI) 

system can be decomposed using Schur’s algorithm so that the system is in upper 

triangular block form.  This method is appealing to ROM designers because it is merely a 

rotation through a unitary matrix, which is a numerically reasonable task to perform, 
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which will also incur less round off and computation error when compared to 

diagonalization methods.  The only difficulty with this method is that spillover occurs in 

the off diagonal blocks.  Spillover is the interaction between the states through the 

upper right matrix block in Schur form.  However, there are techniques to compensate 

for this affect.   

 Once the reduced order model is formulated, a controller can be designed about 

the ROM using standard techniques.  The ROM controller may inadvertently cause some 

un-modeled states to go unstable.  This is where compensation comes into play.  

Implementation of residual mode / residual state filtering (RMF / RSF) is a simple idea.  

The filter will basically cancel out the effect of these problematic states.  This will be 

discussed in further detail in a later section. 

 The third technique, singular perturbation (8), attempts to organize the model 

into slow and fast states, or structure and fluid states, respectively.  The fluid is then 

reduced by this perturbation, which basically assumes that the fluid’s derivative will go 

to zero, making it infinitely faster than the structure.  A ROM can then be designed 

based on this idea.  It will be shown that this perturbation in aero-elastic simulations can 

be then related to the velocity or Reynolds number of the fluid flow.  

1.1 Background 

The model used for the implementation of the different reduced order model 

techniques is an F-16, high performance air vehicle, model obtained from Charbel Farhat 

(1).  This F-16 aero-elastic model contains both structural and fluid states.  The model 

has a total of 78 states, 18 of which are structural states and the other 60 are fluid 
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states.  The model has already been greatly reduced for purposes other than control.  

The objective of the model was to be able substitute different flight criteria to see if 

flutter occurred in the system.  Flutter exists in all structures and is merely a vibration 

which becomes amplified through interactions with external aerodynamic forces.  

Flutter can be disastrous in high performance aircraft, which spawns the need for a 

control system that will be able to reduce or dampen the flutter affects. The goal of this 

research project was to implement these various techniques for designing ROM 

feedback controllers on this relatively large model.   

The structural representation of the F-16 model is based on the normal mass 

(M), spring (k) and damper (D) dynamical system:  

       (1.1.1) 

The right hand of the equation is merely a forcing function based on the fluid states (w) 

and multiplied by the freestream pressure ( ) with a coordinate transformation ( ).  

The terms ( ) are the position, velocity and acceleration respectively.  The fluid 

dynamics of the model were formulated by proper orthogonal decomposition (POD) and 

looks like the following: 

      (1.1.2) 

 The fluid matrices (P, H, L, and N) were formed by complex means of 

computation fluid dynamics (CFD).  They appear as a large assortment of numbers that 

lack physical meaning; conversely, for the structural system, each block represents a 

physical term such as damping, frequency, etc.  is the freestream air density.  The 

fluid and structural equations can be combined in following way:   
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      (1.1.3)  

The state vector (x) is then defined to be 

   then          (1.1.4)  

The system is now a linear time invariant (LTI) homogeneous differential equation in 

the form, .  The next major task is to devise the sensor and actuator matrices so 

that feedback control can be performed.  Because this model was purely an open loop 

system used for flutter analysis at different flight conditions, these matrices did not 

exist.   

It was our initial primary task to decide upon what the actuation and sensor 

matrices should be.  Actuation in the model was set up so that one could apply a normal 

force to a certain node on the wing.  This actuation mechanism is not completely correct 

when thinking about in-flight dynamics.  The actuators (flaps, rudder, ailerons, etc.) will 

move according to the pilot’s commands and change the fluid flow, thereby producing 

new pressure gradients along the wing; thus, changing the lift, flight direction, or angle 

of attack of the aircraft.  In future research it may be more accurate to view the fluid as 

the main actuator.  Because no actuation is being done through the fluid, the fluid can 

be seen completely as a parasitic system, interacting with the structure independent of 

inputs and outputs.  

 The structural system is assumed to be fully actuated and sensed, that is identity 

matrices ( ) are used in place of the actuating and sensing matrices.  Only the position of 
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the structural modes is being sensed.  What this means is that a certain actuator would 

be able to entirely control a single mode of the structure without affecting any other 

modes.  This is a rather large assumption to make, but we do it as a starting point for 

this kind of study.  Even with this fully sensed / actuated model, problems still occurred 

with the reduced order model feedback controller.  The actuator matrix (B) and the 

sensing matrix (C) can be then written as: 

       

 (1.1.5) 

The entire system in first order linear form can be written as: 

   (1.1.6) 

Or 

         (1.1.7) 

The LTI state-space system is represented in block diagram form in Figure 1.   

B C
Inputs (u) Outputs (y)

Plant

 

Figure 1: Block Diagram of Open-Loop State-Space System 
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The idea behind feedback control is to take the outputs from the sensors and relate 

them to the inputs via a controller algorithm.  This will allow for the system to be able to 

react to its own dynamics.  However, once feedback control is implemented problems 

may occur; for example, the controller may drive the system unstable.  The control 

system designer’s goal is to eliminate these instabilities and have the outputs converge 

to zero. 

 In open loop form the system’s stability is determined by the eigenvalues of the 

A matrix.  If one were to completely turn off the inputs and outputs of the system, the 

equation  would be left.  This is a linear time-invariant (A does not depend on 

time) homogeneous differential equation.  The homogenous solution (x(t)), or null 

space, of this differential equation is the matrix exponential, .  If A is a 

simple matrix, it is known that the eigenvectors (P) of A will diagonalize the matrix 

exponential of A, , where  is a diagonal matrix of eigenvalues ( ).  It 

can then be observed that if Real  then  will not to blow up as .  

Therefore, the real part of the eigenvalues must be less strictly less than zero for 

stability to occur.  If even one of the eigenvalues hits zero or becomes positive the 

system will become unstable. (3)     

For the flight criteria the system in open loop form is barely stable.  The 

open loop poles (eigenvalues) can be seen in Figure 2.  It is observed that the open loop 

poles are all stable, even though some poles are just inside the left ½ plane.  The 

eigenvalues of the fluid states lie along the real axis while the eigenvalues of the 

structure states appear in complex conjugate pairs.  Note that the fluid poles are very 
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densely packed while the structure poles are further separated.  Generally, the fluid 

poles are faster (larger magnitude of the negative real part of the eigenvalue) than the 

structure poles, which supports the physical difference between solid (slow) and fluid 

(fast), which is used later on in the research, see section 2.3.   

 

 

Figure 2: Open Loop Eigenvalues of Matrix A 

1.2 Feedback Control Design 

 If all states were known and available at any time, full state feedback control 

would be easy to use.  Wonham’s theorem states the following:(4) 

 



www.manaraa.com

 

- 9 - 
 

This theorem means that if control matrices A and B are controllable there exists a 

matrix G such that A+BG will have arbitrary pole placement.  Arbitrary pole placement is 

important to the control designer so that he or she may place the closed loop poles 

wherever desired.  The system would then look like the figure 3. 

G

+
-

Full Order System

Full Stable Feedback Controller

u y

 

Figure 3: Diagram of Full Stable Feedback Controller 

The system can then be written as the following dynamical equations 

           (1.2.1) 

Simply substitute the input (u) into the state space equations to for the closed loop 

system 

        (1.2.2) 

where the new A matrix (A+BG) has arbitrary pole placement.  Therefore, this system 

can be stabilized under any conditions with the matrix G. 

 Since the states (x) are NOT known, this method will not entirely work.  A state 

estimator needs to be designed and implemented along with the controller (G).  The 

state estimator will be designed such that: 

        (1.2.3) 
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 State estimation error is defined 0. 

The error dynamics can then be calculated as follows: 

         (1.2.4) 

It is now realized that the eigenvalues of (A-KC) must have real parts less than zero for 

the insured convergence of the state estimator.  Wonhams theory also predicts the 

stability of the state estimator by: (4) 

 

The above equation indicates that, if (A,C) is observable, then there will exist a matrix K 

such that A-KC will have arbitrary pole placement.  The two control theorems are then 

combined in the separation principle to introduce feedback control with state 

estimation such that: 

        (1.2.5) 

The system will have arbitrary pole placement if and only if (A,B) controllable and (A,C)  

observable. Therefore, the poles may be placed wherever the designer chooses.  This is 

an extremely powerful method for designing full state feedback control, but often the 

model will be too large to use the controller (1.2.5) and reduced order models are 

needed for control design and implementation. 
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2    Reduced Order Model Procedures 

The following procedures are used to incorporate reduced order model based 

feedback control of aeroelastic systems.  Each reduced order model technique has a 

unique procedure which will be outlined in the following sections.  The three methods 

used were the following: modal truncation with residual mode filter (RMF) 

compensation, singular perturbation approach with balanced reduction, and upper 

triangularization with residual state filter (RSF) compensation.  Only the general 

procedure of each method will be described and no specific results will be examined in 

these sections. 

2.1 Modal Truncation with RMF Compensation 

The aeroelastic model that contains both fluid states and structural states 

organized so that it is in first-order linear time invariant form: 

              (2.1.1) 

This system can be block-diagonalized using a coordinate transformation obtained from 

the eigenspaces of the A matrix.  Many different computational methods exist to solve 

for the eigenvectors and eigenvalues of simple, non-singular matrices [ref].  The 

diagonalization can be done so the system is broken up into 3 subsystems , , and 

.  The  subsystem will serve as the reduced order model from which the controller 

will be designed and is designated by the (AN, BN, CN, D) matrices.  It will look like 

equation (2.1.2) where AN, AR and AQ can be diagonal matrices.  For the moment, the Q 

and R subsystems will be combined; they are only the un-modeled modes. 
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       (2.1.2) 

  is chosen so that all of the open loop instabilities of the A matrix in equation 

(1) are contained in .  That is, all of the eigenvalues of A which have the real part 

greater than or equal to zero (unstable) will be selected as part of the  subspace.   

will also include the dominant modes of the system, which are usually the lowest 

frequency modes of the structure.   

 Once the system is in diagonal linear form and the  subspace is defined, and a 

reduced order model based controller and state estimator are designed for the ROM 

system (AN, BN, CN, D).  The feedback controller and state estimator are shown in Figure 

4.   

+
-

Full Order System

ROM Controller / Estimator

u y

 

Figure 4:  Reduced Order Model Feedback Controller 

The controller and state estimator will be designed as discussed in section 1.2.  Matrices 

are chosen such that the eigenvalues of (AN+BNGN) and (AN-KNCN) are all stable (real 

parts of eigenvalues less than zero).  These will formulate the L, K, and G matrices. 
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       (2.1.3) 

 The margin of stability, or the distance of the spectrum from the imaginary axis, will 

allow for different design criteria.  The margin of stability allows for a faster or slower 

controller. 

 Once the ROM based controller has been designed and implemented, the closed 

loop system can be formed.  An error term ( ) is defined such that the error is the 

difference between the estimated state and the actual state, as seen in equation (2.1.4). 

        (2.1.4) 

Next, the error derivative is calculated to be: 

       (2.1.5) 

Equations 2.1.2-2.1.5 can be combined together to be put into matrix form to produce 

the closed loop system.  This matrix is very special in the fact that it enables the stability 

of the system to be analyzed with the reduced order model based controller 

incorporated.  The closed loop system will be: 

                     (2.1.6) 

The closed loop matrix (AC) may be stable or unstable.  An eigenvalue analysis must be 

preformed to see where the eigenvalues of AC lie.  The ROM-based controller may have 

a tendency to force un-modeled modes or residual modes to be unstable.  Because 

something large and complex is being modeled by something very small and simple, the 
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reduced order model may fail at capturing all of the essential dynamics of the large scale 

system. 

If some of these residual modes are in fact forced unstable by the controller, 

compensation is needed.  A residual mode filter (RMF) (5) will be designed to filter out 

these unwanted instabilities.  The unstable residual modes will be designated by the Q 

subspace which will contain all modes that become unstable in closed-loop; these will 

be called the closed-loop instabilities.  The RMF can be formulated such that: 

          (2.1.7) 

The RMF filter is attached to the feedback controller and plant as shown in figure 5. 

+
-

 +
-

Full Order System

ROM Controller / Estimator

RMF Filter

u y

 

Figure 5:  Feedback Control System with RMF Compensation  

 

As before the error term will be introduced and defined as: 

         (2.1.8) 

Where:        
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Now, the closed loop system can be derived and is seen in equation (2.1.9).   

  (2.1.9) 

This closed loop system is stable.  All open loop instabilities are contained within 

the upper left 3 by 3 matrix which was modified to be stable by the reduced order 

model controller.  By definition AR and AQ are stable in open loop.  Therefore, it is seen 

all of the interaction of the ROM controller and AQ has been removed by the RMF, by 

adding a column of zeroes above the first  and a row of zeroes to the left of the 

second .(5) 

2.2 Schur Decomposition with RSF Compensation 

Schur Decomposition with residual state filtering (RSF) is a reduced order 

modeling method that is very similar to the previously discussed method, modal 

truncation with RMF compensation.  There are only a few slight differences that will be 

revealed in the following section.  This technique has its advantages and disadvantages 

from the previous ROM technique. 

The system, just as before, is put into its first-order, linearized form as seen in 

the following equation: 

             (2.2.1) 
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The A matrix is then transformed into upper diagonal block form using Schur 

triangulization decomposition method.  This method is performed the following way.  

The A matrix can be decomposed by matrix V such that: 

           (2.2.2) 

Where  is the conjugate transpose of V, and V is also a unitary matrix, therefore, 

 .  Unitary matrices have some special characteristics:  A unitary matrix 

with all real entries is an orthogonal matrix and satisfies the following inner product: 

.  Consequently, a unitary matrix preserves the norm.  Moreover, the 

columns of V will form an orthonormal basis on the complex space ( ).  Likewise, the 

rows of V will form an orthonormal basis on . (6) 

Matrices in upper triangular block form (Schur form) have some useful 

advantages over full matrices.  Their eigenvalues lie on the diagonal, and may be sorted 

in any order along the diagonal.  If one were controlling an aeroelastic system, he / she 

might like to organize the eigenvalues such that the slower values (eigenvalues with 

smaller negative real parts) would appear first along the diagonal, while the faster 

values (eigenvalues with larger negative real parts) would be near the end of the 

diagonal.  This could be useful to design reduced order models about either the slow or 

fast eigenvalues of the system. 

 Once the system is in Schur form, it can be broken up into two subsystems, 

similar to the modal case: 

              (2.2.3) 
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The  subspace or states will formulate the reduced order model, while the  states 

will be the referred to as the residual states.  The  states are chosen so that all open 

loop instability is contained within  and also contains the most dominant modes for 

control.  Once this system is organized accordingly, a controller and state estimator 

based on (AN, BN, CN, D) can be designed in the exact same fashion as before. 

       (2.2.4) 

Next, the feedback controller / estimator shown in equation (2.2.4) are attached to the 

full order system as seen in Figure 4.  An error term is again defined as: 

        (2.2.5) 

The closed loop system can now be formed, so that the overall dynamics / stability of 

the system can be analyzed. This will look like equation (2.2.6) shown below: 

 Where:   (2.2.6) 

The closed loop system  may be stable or unstable; it all depends on whether the 

reduced order model controller / estimator forced some un-modeled states to go 

unstable.  If there is no instability the ROM controller has adequately performed its 

function and no further work is needed!  If instabilities do exist, these problematic 

states must be located and compensated using a residual state filter (RSF).  The unstable 

states are designated as the Q states, and again the system is broken into three 

subsystems as shown in equation (2.2.7). 
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      (2.2.7) 

This system is nearly the same as the previous one (equation 2.2.3); the only 

difference is that the Q states (XQ) have been separated out of the previous r states (Xr) 

which produced both XR and XQ.  This new subsystem will have no affect on the ROM 

designed controller. The benefit of designating these Q states is that when they are 

removed from the closed loop system, the system will become completely stable. 

Notice how the Schur form reduced order model differs from that of the modal 

case.  The Schur form system has these “spillover blocks” which are the off diagonal 

blocks connecting the different subspaces.  The residual state filter will need to filter out 

this spillover as well as the closed loop instability.  The RSF needs to be designed such 

that: 

        (2.2.8) 

Where:    and    

The closed loop system is then formed with the RSF compensation attached.  It appears 

as the following: 

 (2.2.9)  
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This system (AC) is not necessarily stable.  As it is seen, this matrix differs from 

the modal truncation with RMF compensation (Equation (2.1.9)) by these spillover 

blocks,  and .  Note that when these matrix blocks are set to zero, this method 

will be exactly equivalent to the modal truncation method.    will now interact with 

the ROM system through the matrices  and . This closed loop system can be 

separated into the following form such that: 

+  

In this form it is simple to see that the spillover ( ) will affect the stability of 

the entire system.  However, when the norm of ( ) is small enough, the 

stability of will prevail. If the matrix  is large enough this interaction between  

and the ROM could de-stabilize the system.  Further work is needed on this reduced 

order model approach.  

This method is a relatively appealing for formulating and implementing reduced 

order model control with compensation, because it is computationally trivial to perform 

the Schur decomposition and also may be used in conjunction with a variety of 

techniques such as singular perturbations or balanced reduction.  

2.3 Singular Perturbation Approach  

The third ROM technique is that of the small perturbation approach.  This 

method is quite different from the two techniques previously discussed.  The singular 



www.manaraa.com

 

- 20 - 
 

perturbation approach utilizes the different speeds of the plant’s eigenvalues.  The 

speed of an eigenvalue is determined by the magnitude of the negative real part.  

Slower eigenvalues will have smaller magnitudes, while faster eigenvalues will have 

larger magnitudes in relation to each other. That is, the system may be broken up into 

slow and fast modes / states for the design of the reduced order model controller.  In 

the case of aeroelastic feedback control, the fluid states’ reaction times will be much 

quicker than the structure’s, so the fluid states will be the faster states.  This means that 

the real parts of the eigenvalues will be consistently larger than the structural 

eigenvalues, which is verified by the plot of poles in Figure 2.  These features will be 

discussed in further detail later in this section. 

Just as before, the system is put into the first order linear form as seen in 

equation (2.3.1): 

             (2.3.1) 

The primary goal of this approach is to break up the vector of states ( ) such that the 

slow states are separated from the faster states.  For aero-elastic models, plants which 

contain fluid and structural states, the faster states will obviously be those of the fluid; 

this means basically that the fluid will react much quicker than the structure, which is 

true from physics.  If the system is broken up into structure / fluid blocks it looks like the 

following: 

       (2.3.2) 
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 For aero-elastic models breaking the system into structure/fluid subspaces is a 

simple task to do.  The fluid states are completely distinct from the structure states, so 

these matrices are easily formed.  Next, a small perturbation parameter ( ) is 

introduced to modify the fluid system, as seen in equation (2.3.3). 

       (2.3.3) 

The reduced order model is then designed such that .  Epsilon equal to zero states 

that the fluid states will be infinitely fast when compared to the structural states.  Since 

the derivative of the fluid will now be zero, this implies that the fluid will react to 

external forces or pressures immediately.  This seems like a strong assumption to make, 

but if the system one is modeling is an aircraft flying at mach 1 speeds, this will be 

undoubtedly true.  The timescale of the fluid will be much smaller than the structure.  

Once the fluid system is modified by the singular perturbation, the equation will look 

like: 

       (2.3.4) 

Next, if  is completely stable and invertible then the fluid states  can be solved for, 

yielding: 

       (2.3.5) 

The fluid states can then be plugged into the rest of the plant model to get the following 

result: 
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    (2.3.6) 

The reduced order model is then represented by the matrices , , , 

and .  This technique reduces the size of the system to the size of the structural system 

by inserting this perturbation ( ) which approximates the fluid as having an infinitely 

fast derivative.  If further reduction is still needed at this point, another combination of 

methods may be used. For example, balanced reduction may be applied, or even the 

two previously discussed methods may be used.  The ROM feedback controller / 

estimator are then designed to form the following matrices: (4) 

       (2.3.7) 

Again the stability of the entire system needs to be analyzed to see how well the 

reduced order model estimated the full scale model.  The easiest way to do this is 

formulate the closed loop system which can be seen in the following equation: 

     (2.3.8) 

 

There is a theorem by Balas that states: (7) 
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According to this theorem there exists a range of singular perturbations ( ) for 

which this system (Equation 2.3.8) will be stable.  The size of this upper bound  is 

unknown, but can be estimated as in (7).  It may be close to one or may quite small.   

In aeroelastic systems the singular perturbation parameter can be directly related to 

the inverse of the fluid flow velocity, .  As the velocity grows the singular 

perturbation tends towards zero.  This states that at extremely high velocity values 

epsilon will go to zero, thus validating the idea that the fluid is infinitely fast when 

compared to the structure. 
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3 Results 

In this section the results for the three previous methods for reduced order 

modeling will be discussed.  Each technique was applied to an aero-elastic model of the 

F-16 aircraft.  Rather different results were observed for each of the methods.     

3.1 Modal Truncation  

The modal truncation method, described Section 2.1, was implemented and the 

following results were obtained.  The controller / state estimator were designed such 

that the eigenvalues of the matrices (AN+BNGN) and (AN-KNCN) were all stable and were 

placed in fast enough positions to properly control the system.  These eigenvalues can 

be seen in the following figure.  The estimator eigenvalues were designed to be about 4 

times faster than the controller. 

 

Figure 6: Controller and Estimator Pole Design 
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The closed loop eigenvalues were plotted in Figure 7.  Notice that one unstable 

mode (two unstable states) exists.  These were found to be states 50 and 51 in the fluid 

system.  These are the states where the ROM controller had an adverse affect. A 

residual mode filter must be used to compensate for these problematic states.   

 

Figure 7: Closed Loop Poles of Equation 2.1.6 

One may think that these two states are insignificant and would not affect the dynamics 

of the entire system, but indeed they do.  Any instability in a system is always a problem 

and can never be neglected.   

Simulink was then utilized to simulate the performance of the system over 5 

seconds.  As seen in Figures 8 and 9 states 50 and 51 of the fluid system drive the entire 

system completely unstable; that is the outputs and states go toward infinity as time 

increases.   
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Figure 8: Outputs (y) of System with No Compensation 
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Figure 9: States (x) of System with No Compensation
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 Once it was determined that the unstable states were the fluid states [50, 51], 

these were separated into the  subsystem.  The RMF was designed on these states.  

When implemented, the closed loop system in equation (2.1.9) was created.  The 

eigenvalues of the matrix   were plotted in Figure 10.   

 

Figure 10: Closed Loop Poles of Equation 2.1.9 

 It can be seen that the RMF has done its job and stabilized those problematic 

states.  All modes now lie on the left half plane, so the goal of the compensator was 

achieved:  A residual mode filter was used to stabilize a modal truncation ROM of an 

aeroelastic system.  Again Simulink was used to analyze the performance of the system 

over time.  Figures 11 and 12 show that the system’s states and outputs now converge 

to zero.  If design constraints existed, for example if the system needed to converge to 

zero within 0.1 seconds, the control designer would then have to go back and design a 

new controller that would do this, but the RMF would remain the same. 
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Figure 11: Outputs (y) of System with Compensation 
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Figure 12: States (x) of System with Compensation
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3.2 Schur Form Results 

The method in Section 2.2 was followed and the results are presented here.  The 

controller was designed such that the poles of the controller / state estimator (AN+BNGN) 

and (AN-KNCN) were stable.  This is verified figure 13.  Again the estimator poles were 

designed to be approximately 4 times faster than the controller.  The speed of the 

controller eigenvalues were chosen by trial and error.  They needed to be much more 

stable than the eigenvalues of the plant to produce good response.   

 

Figure 13: Real and imaginary plot of Controller / Estimator Poles of the Schur Form ROM based Controller 
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closed loop system, except now the ROM based controller is designed about a non-

diagonal matrix.  The Schur form closed loop system is seen in Figure 14.   

 

Figure 14: Schur Form Closed Loop System Eq (2.2.9) 

The closed loop system is completely stable; all eigenvalues lie in the left half 

plane.  Because the ROM based feedback controller did not cause any un-modeled 

states to become instable, no compensation was needed here!  If the controller had 

forced states to be unstable a residual state filter would be needed to filter out those 

adverse affects.  Simulink was used to verify the results of the closed loop system.  A 

simulation was performed over a sample time of 0.5 seconds to analyze the 

performance of the system; this is presented in Figure 15 and 16. 
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Figure 15: Outputs (y) of system in Schur form No Compensation 
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Figure 16: States (x) of system without compensation 
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As seen in figures 15 and 16, the system does converge to zero in a relatively 

quick time.  The states in Figure 16 tend to oscillate more when compared to the modal 

case.  This indicates that indeed spillover is occurring here.  The states are now 

influencing each other through the off diagonal blocks in the upper triangular block 

form.  

3.3 Singular Perturbation Results 

The method for singular perturbation parameter, laid out in Section 2.3, was 

followed and the following results were obtained.  The simulink plots in the following 

figures show the different simulations with a certain size perturbation. An upper bound 

on the singular perturbation was found.  

This upper bound ( ) was found to be approximately 0.00074. At epsilons lower 

than 0.00074 the closed loop system seen in equation (2.3.8) is completely stable. Once 

the perturbation grew above this , the system would go unstable.  Therefore there 

exists an upper bound for which: (8) 

. for AC Stable 

 This is seen in the following figures.  The significance of this number is not known at this 

point.  It suggests that this ROM based control system may only work when the system 

has velocities related to  .    If this is the case,  (ft/s) would be an accurate 

description of supersonic speeds.  Although the units are unknown in this model, it is 

hard to decide without communication with the author of the F-16 model (Charbel 

Farhat) what the significance of this number really is. 
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Figure 17: Outputs of System with ε > ε* 
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Figure 18: States of System with ε > ε* 
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Figure 19: Outputs of System with ε < ε* 
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Figure 20:  Outputs of System with ε < ε*
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4    Discussion 

In summary, the three reduced order model methods for implementing feedback 

control were carried out on the F-16 aero-elastic model and the results have been 

shown.  The full order model consists of 78 states; the reduced order model for the 

three techniques is 18 states, approximately a 75% reduction.  Further reduced order 

models tended to produce more potential instability in the system. Each method has its 

advantages and disadvantages.  The following section will explore the pros and cons of 

each of the previously presented ROM techniques. 

The modal truncation method provides an excellent means for designing ROM 

based controllers for structures only.   The modes of the structure are very well 

distinguished; the eigenvalues are largely separated and very sparse, which allows for an 

easy choice to retain or throw away certain eigenvalues.  The structural modes are also 

directly related to the resonant frequencies of the structure.  The lower frequency 

modes have the highest displacements and highest energy states.  One can see that 

these lower frequency modes would be the best to capture, while the higher frequency 

modes would be the ones to neglect. In fact, designing the ROM about the lowest 

modes in a structure is a very good representation for the dynamics of entire system.   

This method has not been applied to structure-fluid systems, until now.  Fluid 

systems’ eigenvalues tend to be very closely positioned which makes it difficult to 

eliminate certain modes while retaining others.  It is also difficult to determine the most 
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dominant modes in the fluid system.  Much more fluid dynamics knowledge is needed 

for the model to determine which modes are needed and which can be neglected.   

In the F-16 model, all fluid modes were thrown away and the ROM was only 

designed about the structural modes.  The feedback controller was designed from that 

information and then implemented on the full order model.  After the designed 

controller was implemented on the full model, instabilities were produced in the fluid 

system.  At this point a residual mode filter was used to filter out this instability in the 

fluid.  It is important to note that one could have gone about this ROM completely 

differently.  The designer could have chosen to design the ROM about only the fluid 

modes, or both the fluid and structure. These ideas should be considered in a future 

project.   

The Schur form method for model reduction is a very appropriate method to 

choose for aeroelastic models.  Upper triangular block form allows for certain 

advantages over the modal case.  If the scale of the system is on the order of 105 states, 

diagonalization is a costly method.  Putting the system into upper triangular block form 

should be easier and have less computational errors.  Although no residual state filter 

was needed in this experiment, if it was required the RSF would perform similarly to the 

RMF compensation in the modal case.  However, the RSF will be a bit more complex 

because it will now need to contain the spillover blocks.   

The singular perturbation approach allows for the separation of the system into 

slow and fast states.  This perturbation approach is seen to be extremely useful in the 

aeroelastic areas because of the large differences in structure and fluid timescales.  The 
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singular perturbation may also be related to a velocity term, which is an extremely 

useful observation.  This approach can also be used in conjunction with the other two 

methods to produce ROM based controllers.   

Different combinations of these methods may be a good area for future work.  

For example, Schur Decomposition method used along side with the single perturbation 

parameter and RSF compensation has promising features.  This hybrid method would 

allow for extremely large reductions with highly accurate results.  This would be another 

area for future research.   

Also, balanced reduction would be an alternative combination to use with the 

single perturbation parameter.  Balanced reduction is an algorithm that calculates the 

Hinkel values of the linear time-invariant system.  The Hinkel values determine the most 

controllable and observable states in the system, so that the ROM can be based of of 

those.  Balanced reduction optimizes controllability and observability in a LTI system.  

Although no balanced reduction was used in this research project, it may turn out to be 

a very promising alternative to reduced order model based control of aeroelastic 

simulations. 
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